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Abstract

The motivation of this work is to obtain a simulation tool which will be capable
of modelling simple micro-devices in the gas slip flow regime. To achieve this
goal Maxwell Smoluchowski boundary conditions were implemented by means
of a udf routine into the commercial fluid finite volume solver Fluent. The ap-
plied velocity slip and temperature jump boundary condition are varied for
small Knudsen numbers Kn ¬ 0.1. In this regime there are several industrial
applications such as micro-electro-mechanical systems (MEMS), heat exchange
on chips and boundary layer problems for aerospace and turbomachinery ap-
plications. This report shows how the boundary condition implementation was
done and is applied to a number of test cases: flow through a rectangular chan-
nel, Couette flow between two cylindrical surfaces, thermal creep flow between
two heated tanks, flow through a bended diverging channel, a box heated with
different wall temperatures and a vortex pattern flow between cylindrical sur-
faces heated with different temperatures.
Among the test case setups are a few validation cases where good agreement

with numerical or analytical results from references was obtained.
Additional verification test cases were created in order to demonstrate cer-

tain abilities of the implementation.

List of Symbols

∆m Residual of momentum equation
γ Specific heat ratio
λ Mean free path
µ Dynamic viscosity
ω Rotational velocity
ρ Density
σ Molecular diameter
σT Thermal accommodation coefficient



σv Tangential momentum accommodation coefficient
ζ Slip length
A,B Constants in analytical equation
b Constant in boundary condition formulation
c Transformation coefficients
f Under-relaxation factor
h Channel height
k Boltzmann constant
Kn Knudsen number
L Channel length
l Characteristic length scale
~n Unit wall-normal vector
p Pressure
Pr Prandtl number
R Specific gas constant, radius
T Temperature
uτ Circumferential velocity
~U Velocity vector in fixed coordinate system
~u Velocity vector in local wall coordinate system

iv
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Introduction

A classification of flows into no-slip, slip, transition and free molecular flows for
gases can be made according to their respective Knudsen number Kn defined
as:

Kn =
λ

l
, (1.1)

λ =
k T√
2π σ2 p

. (1.2)

Here λ is the mean free path, l a characteristic length scale of the considered
problem, T the temperature, σ the molecular diameter, p the pressure and k
the Boltzmann constant.
Flows with Kn ¬ 0.001 are regarded as no-slip flows, 0.001 ¬ Kn < 0.1 are

slip flows; 0.1 ¬ Kn < 10 are flows in transitional regime and with Knudsen
number Kn > 10 are regarded as free molecular flows [9]. Above the slip flow
regime the Navier Stokes equations can no longer be applied. However, flows
in the slip flow regime can be handled with the Navier Stokes equations, if
appropriate boundary conditions are provided.
Several formulations of such boundary conditions were proposed [5, 6, 9, 12,

15]:

ufluid − uwall =
2− σv
σv
λ
∂u

∂y
+
3
4
µ

ρT

∂T

∂x
, (1.3)

Tfluid − Twall =
2− σT
σT

2γ
γ+1

λ

Pr

∂T

∂y
. (1.4)

Equations (1.3) and (1.4) are the Maxwell velocity-slip boundary condition
in its velocity formulation and the Smoluchowski temperature jump condition,
stating the difference between the actual value of the wall and of the fluid at the
wall. Here Pr is the Prandtl number, σv the tangential momentum accommo-
dation coefficient, σT the thermal accommodation coefficient, ρ the gas density,
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u the stream-wise velocity, γ the specific heat ratio, x and y the tangential and
wall-normal coordinate direction respectively
These formulations apply to flat surfaces in non-rotating domains. As it

was noted by other investigators neglecting the influence of surface curvature
or rotating motion on the slip behaviour leads to false predictions. Introduc-
ing necessary modifications for those cases extended formulations have been
proposed [11]:

ufluid − uwall =
2− σv
σv
λ
(∂u
∂y
+
∂u

∂x

)
+
3
4
µ

ρT

∂T

∂x
. (1.5)

A further extension taking higher order terms into account has been proposed
by the same authors [11]. Their formulation has been implemented only partly
here (neglecting higher-order terms),

ufluid−uwall =
2− σv
σv
λ

[
∂u

∂y
+
∂u

∂x
+
µ

ρ

(
1
ρ

∂2ρ

∂x∂y
− 1
T

∂2T

∂x∂y

)]
+
3
4
µ

ρT

∂T

∂x
. (1.6)
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Numerical Model

The numerical investigation has been carried out with the commercial Navier
Stokes fluid solver Fluent r© version 6.2.16. In this solver slip boundary condi-
tions can be implemented in two different ways:

• by the velocity slip as a moving wall; the corresponding value can be

provided in
[
m

s

]
• providing the shear stress term at the wall in [Pa]

Similarly, the temperature or temperature jump at the walls can be stated in

terms of the temperature directly [K] or the resulting heat flux
[
W

m2

]
[8].

By means of additional function such as an udf library (see appendix A)
the mentioned boundary conditions have been implemented. Herein an under-
relaxation term was introduced that accounts for the comparably high changes
of slip and temperature especially with higher Knudsen number values when
started from a rather different initial guess. It will be shown later that with
under-relaxation term the speed of convergence can be increased.
All calculations were performed as laminar flows with the three-dimensional

segregated solver. In here the gas was regarded as being an ideal compress-
ible gas thus having a non-constant density ρ which is a crucial fact for the
estimation of the mean free path throughout the computational domain.
Specific information about the used solver are given below:

• Fluent solver 6.2.16;
• three-dimensional, double precision variant;
• laminar approach;
• segregated, implicit solving algorithm.
For surface curvature the local wall coordinate system is in general not

aligned with the solver’s coordinate system. This makes a transformation of
coordinate system necessary. Figure 2.1 illustrates this problem. The velocity
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vector ~U is described in the solver coordinate system ~XN=( ~X,~Y ,~Z). A transfor-
mation into the local wall coordinate system ~xn=(~x,~y,~z) leading to the velocity
~u will be applied.

~x, ~u

~y, ~n

~z ~x, ~u
~y, ~n

~z~X, ~U

~Y

~Z

Fig. 2.1. Curved surface shown with local surface-fitted coordinate systems at two arbitrary
points; the vectors ~x, ~y, ~z (small letters) indicate the local coordinate system and ~X, ~Y , ~Z
(capital letters) indicate the fixed solver coordinate system; symbols ~u and ~U are the velocities
in the local and fixed coordinate system; ~n is the unit wall-normal vector.

The transformation can be as in equation (2.1). Similarly the velocity gra-
dient ∇x~u is transformed as in equation (2.2).

~u = c · ~U,
∇xT = c · ∇XT, (2.1)

∇x~u = c · c · ∇X ~U. (2.2)

Nabla operators ∇x and ∇X refer to the gradient operator evaluated in the
local and fixed solver coordinate system respectively. The symbols c are the
scalar products of both coordinate system base vectors (~x,~y,~z) and ( ~X,~Y ,~Z).
They represent 9 equations:

c = ~xn · ~XN . (2.3)

In general the following properties are used in order to define the wall coor-
dinate system: in the wall coordinate system the unit normal vector ~n equals ~y
and the velocity vector um is aligned with ~x as the flow is parallel to the wall in
its vicinity. If the flow is unsteady or the domain is in motion the transformation
coefficients have to be computed in every single iteration step.
All coordinates of the velocity vector have to be stated in terms of the

fixed solver coordinate system and thus are transformed back from the wall
coordinate system.
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Test Cases

3.1. Rectangular Channel

3.1.1. Setup

The calculations were performed with the model of a rectangular channel
whith aspect ratio 20:1:1 in x, y, z direction. The gauge pressure [8] is set to 0
at the outlet and 5 Pa at the inlet, which applies for all configurations of this
test case. The gauge pressure is added to the ambient pressure given in table
3.1 resulting in the respective static pressure p at the outlet boundary. The
upper and lower z-boundaries are symmetry planes. At the lower and upper y-
boundary planes the wall boundary conditions are applied. Details of the chosen
grids for the finite volume method are given in section 5.1.

inlet outlet z

y

symmetry plane

h

L

wall

x

y

Fig. 3.1. Rectangular channel with length L and height h.

As it is clear from (1.2) the Knudsen number can be changed by either the
characteristic length scale or the mean free path (e.g. changing the density).
This is done with three sets of Knudsen numbers in the range of 0.0068 ¬ Kn ¬
0.52.
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group Knout set h [m] p [Pa] T [K] ρ [kg/m3]

1
0.0068 I 10−5 101.325 300 1.225
0.0069 II 10−4 20.000 600 1.165 · 10−1
0.0069 III 10−3 2.000 600 1.165 · 10−2

2
0.068 I 10−6 101.325 300 1.225
0.069 II 10−4 2.000 600 1.165 · 10−2
0.069 III 10−3 400 1.200 1.162 · 10−3

3
0.1 I 6.8 · 10−7 101.325 300 1.225
0.1 III I 10−3 400 1.740 8 · 10−4

4 0.2 I 3.4 · 10−7 101.325 300 1.225

5
0.34 I 10−6 101.325 300 1.225
0.3445 II 10−4 400 600 2.33 · 10−3
0.3445 III 10−3 100 1.500 2.35 · 10−4

6 0.4 I 1.7 · 10−7 101.325 300 1.225

7
0.52 I 2 · 10−7 101.325 300 1.225
0.52 II 10−4 400 900 1.55 · 10−3
0.52 III 10−3 100 2.250 1.58 · 10−4

Table 3.1. Simulation parameters for all cases at the outlet plane. The Knudsen number
increases from group number 1 to 7. For set number I Knudsen number varies with geometry,
for set number II and III with temperature and pressure. Sets number II and III differ in the
channel height h.

Pressure and temperature values were chosen arbitrarily. The given variable
values are computed at the position of the outlet in each case and presented
in table 3.1. The values subject to variation within one set are displayed in
bold-face.
The dynamic viscosity µ was set according to equation from [10] where R

is the specific gas constant:

µ = 5/16
√
π

RT

k T

π σ2
. (3.1)

The options common for all configurations of this test case setup read as follows:

• steady state calculation;
• first order upwind spatial discretisation scheme;
• laminar simulation with ideal gas: air;
• isothermal calculations;
• wall slip velocity boundary conditions applied at the walls.
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3.1.2. Stream-wise Dependence

The outlet properties of the flow are presented in table 3.1. As a consequence
of equation (1.2) the mean free path length depends on the pressure, thus the
value changes along the flow direction. In the framework of this investigation a
constant pressure difference ∆p = 5 Pa for all cases was applied. Even in the
case of high Knudsen number Kn = 0.3445 (set III) this value corresponds to
a pressure ratio not higher than pin/pout = 1.05. Thus one could reason that
the variation of Knudsen number along the wall in the channel is rather low.
For all other cases the influence should be on an equal level or even lower.
Figure 3.2 compares two profiles for two different Knudsen numbers. In that

case only slight influence of the position in the channel with length L on the
resulting channel velocity profiles can be seen. In fact the increase between
the x = 0.25L and the x = 0.75L position of wall velocity in the case of
Kn = 0.3445 is 3.3%, and at the centerline is 2.2%. For Knudsen number
Kn = 0.1 a wall velocity difference of 1.0% was found.

-0.5

-0.25

 0

 0.25

 0.5
0.0 0.5 1.0 1.5

P
os

iti
on

 y
/h

Velocity  u/uavg

x/L=0.25
Kn=0.1
Kn=0.3445

-0.5

-0.25

 0

 0.25

 0.5
0.0 0.5 1.0 1.5

P
os

iti
on

 y
/h

Velocity  u/uavg

x/L=0.75

Fig. 3.2. Channel flow; velocity profiles at two positions along the channel (x/L = 0.25 and
x/L = 0.75) for group 3 and 5 of set I; all velocities are normalised by the average velocity
uavg of the x/L = 0.25 profiles; the pressure ratio 1.05 was set.
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Position x/L

Knout=0.2, calculation
Knout=0.2, Navier Stokes
Knout=0.2, Burnett

Fig. 3.3. Channel flow; pressure distribution along the channel using the setup of set III; values
are normalised with the corresponding outlet pressure pout; curves are compared with results
for Navier Stokes and Burnett equations [9]; additionally a straight line for p/pout is plotted
from inlet to outlet.

As the difference in spanwise velocity is comparably small an additional
case has been set up keeping Knout constant but increasing the inlet pressure
ratio pin/pout = 2.28. The rectangular channel setup of reference [9] serves to
validate the implementation and demonstrate the influence of comparably high
applied pressure gradients.
An analysis [2] of the Navier Stokes equations showed that then the distri-

bution of the pressure along the channel must be non-linear. Furthermore it was
stated that the non-linearity in the pressure distribution at constant pressure
ratio must decrease with increasing Knudsen number [1]. As can be seen in
figure 3.3 the pressure is non-linear depending on the channel position x. The
increased pressure ratio leads to a non-linear dependence of wall slip velocity
on the channel position as well. The results used here for comparison are taken
from reference [9] where the boundary condition is shown here for completeness
in equation (3.2). That boundary condition has been applied in Burnett and
Navier Stokes equations.

ufluid − uwall =
2− σv
σv

Kn

1− bKn
∂u

∂y
, (3.2)

where b is a constant, that can be determined analytically for applications in
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the slip flow regime. Comparing equation (1.3) and (3.2) and neglecting the

thermal creep term the value
Kn

1− bKn
is of the same order as the mean free

path λ.

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

  u
/u

m
ax

Position x/L

Knout=0.2, calculation
Knout=0.2, Navier Stokes
Knout=0.2, Burnett

Fig. 3.4. Channel flow; wall velocity along the channel using the setup of set III; normalised
with the maximum velocity at x = 0 position; curves are compared with results for Navier
Stokes and Burnett equations [9].

The detectable deviation of pressure from linear characteristics is caused by
the increase of velocity with decreasing Kn number (growing stream position
along x axis), as is seen in figure 3.4. Near the inlet region all curves are con-
siderably close to each other, but show differences when approaching the outlet
region. In general the results found here agree better with the Navier Stokes
approach [9]. As the Knudsen number grows towards the outlet the flow is out-
side of the validity of Navier Stokes equations. Therefore the Burnett equations
approach predicts lower wall slip velocities near the outlet.

For the computed cases according to table 3.1 and noticing the influence on
the pressure and velocity fields we can conclude that it is sufficient to examine
only one velocity profile at an arbitrarily chosen position along the channel.
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Fig. 3.5. Channel flow; normalised velocity at channel position x = 0.25L, for two different
Knudsen numbers Kn = 0.0068 (group 1) and Kn = 0.3445 (group 5) for nominally two-
dimensional grid 25x125x1.

3.1.3. Knudsen Number Dependence

The dependence of velocity profiles and slip velocity on the Knudsen number
for the slip boundary conditions for all three sets at two different Kn values
is shown in figure 3.5. Basically, the way the Knudsen number is varied shows
no influence on the velocity profile. Hence only one set of velocity profiles over
a range of Kn numbers is plotted in figure 3.6. For the ease of readability the
curves are plotted solely on one half of the channel. In [4] similar investigations
were performed using the Direct Simulation Monte Carlo method (DSMC).
They found the function (3.3) to fit their velocity profile results. Herein b = −1
(mentioned in equation (3.2)) was chosen with h being the channel height in y
direction

u

uavg
=
−
( y
h

)2 + yh + Kn
1−bKn

1
6 +

Kn
1−bKn

. (3.3)

The values presented in [4] were in agreement with the linearised Boltzmann
equation results of [14].
During the transition from a low Kn number to a higher value the non-
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Fig. 3.6. Channel flow; normalised velocity profiles at channel position x = 0.25L for four
different Knudsen numbers (groups 1, 3, 4 and 6 of set I) for nominally two-dimensional grid
25x125x1. Only half of each profile is plotted to avoid overcrowding.

dimensional wall velocity increases and centreline velocity decreases. As a result
both values approach the average value and thus flatten the whole curve.
For Knudsen number higher than Kn = 0.2 the wall slip and centreline

velocity values deviate from the given curve u = f(Kn) (equation 3.3), and
they overestimate the value of wall slip velocity. Clearly, those values lie outside
the range of the slip flow regime. Beyond this the usage of the Navier Stokes
equations with first order slip boundary conditions, as used here, is no longer
appropriate. However, the examples of flow within the slip-flow regime are in
good agreement with the curves given by reference [4].

3.1.4. Influence of Tangential Momentum Accommodation Coefficient

In equations (1.3), (1.5) and (1.6) the parameter σv has been introduced
which allows for the consideration of the amount of momentum that is con-
tributed to the wall slip. A value of σv = 1 is related to diffusive reflections of
the particles at the wall. As can be seen from equations (1.3) and (1.5) lowering
σv increases the non-dimensional wall velocity slip value. As was noted before,
in the same instant the non-dimensional centreline velocity decreases. However,
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Fig. 3.7. Channel flow; normalised centreline (upper curve) and wall slip velocity (lower curve)
in the function of Knudsen number for all groups in set I and nominally two-dimensional grid
25x125x1.

the value σv = 0 would lead to an infinite velocity slip value. Figures 3.7 and
3.8 show how the value of σv influences the wall slip and centreline velocity of
set I and II respectively. The velocity curves shown in figure 3.7 and 3.8 (dashed
line) follow equation (3.3). It has been pointed out before that above Kn ≈ 0.2
or a density ρ below ≈ 0.01 the wall slip and centreline values deviate from the
given curve f(Kn), f(ρ) due to the invalid descriptions of the flow regime by
Navier Stokes equations.

3.2. Couette Flow

In this section a validation of the slip velocity implementation on curved
surfaces has been carried out. The simulations of Couette flow between two
cylinders with common axis of rotation where the inner one rotates and the
outer one is at rest were performed. This test case serves two purposes: wall
motion together with wall slip will be considered and the influence of wall
curvature will be examined.
The outer and inner radii are expressed as multiples of the mean free path

λ; Rout = 25λ and Rin = 15λ. The gas is air with uniform temperature T =
300 K. Taking the radial distance between both cylinders as a characteristic
length the Knudsen number is Kn = 0.1. The computational domain consists
of a 30◦ rotational-symmetric slice of the whole domain. The azimuthal end
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Fig. 3.8. Channel flow; normalised centreline (upper curve) and wall slip velocity (lower curve)
in the function of density and Knudsen number (lower x-axis) for set II and nominally two-
dimensional grid 25x125x1.

planes are set as a periodic pair. In direction of the rotational axis one grid
element is placed with bounding symmetry planes representing a nominally
two-dimensional domain. Inner and outer cylinder are set as walls with the
velocity slip condition applied. Figure 3.9 illustrates this setup.

periodic

period
ic

ωin

+
Rin

Rout

uτx

y

z

Fig. 3.9. Setup of Couette flow case; inner wall bounded by Rin is moving with rotational
speed ωin; the outer wall bounded by Rout is at rest.

Holding the inner surface in steady motion with a rotational speed of ωin =
0.25 rpm the wall slip effects have been studied for various values of the tan-
gential momentum accommodation coefficient σv.
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In a study of slip effects on macro- or microscopically curved surfaces formu-
lations of the slip length ζ were considered [7, 17]. This expression is the term
2− σv
σv
λ from equation (1.3). It was stated that surface curvature contributes

to the slip length and an expression for the velocity profile of the Couette shear
flow was provided there. With ωin being the angular velocity the equations
read:

ζ =
2− σv
σv
λ, (3.4)

A =
(
1− 2 ζ

Rout

)
/R2out, B =

(
1 + 2

ζ

Rin

)
/R2in, (3.5)

uτ (R) =
ωin
A−B

(AR− 1/R) R = {Rin . . . Rout} (3.6)

The computational setup can be summarised as follows:

• steady state calculation;
• first order upwind spatial discretisation scheme;
• laminar simulation with ideal gas: air;
• isothermal calculations with T = 300 K;
• wall slip velocity boundary conditions with wall motion applied at walls;
• grids: 30x26x1, 60x52x1.
Together with the computational results the function uτ (R) for three dif-

ferent σv is plotted in figure 3.10. In general the velocity profile for slip Navier
Stokes approach is in good agreement with the function given by reference [7].

3.3. Thermal Creep Flow

In equation (1.5) the thermal creep term of the slip velocity has been in-
troduced. This term accounts for the slip induced by a tangential temperature
gradient. Validation will be performed using the test case introduced in refer-
ence [3].
The setup configuration consists of two large gas tanks with two different

constant temperatures (T1 = 300 K and T2 = 400 K). The tanks are connected
with a channel of length L and height h. Due to the tangential temperature
gradient thermal creep flow in the wall’s vicinity is induced. The resulting nor-
mal velocity gradient activates the slip flow mechanism. After pumping in the
early stages of the process from cold to hot the pressure in the right tank is
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diction from [7], labelled as EPL; the radial position is normalised by the mean free path λ;
result for nominally two-dimensional grid 60x52x1.

increased. This eventually leads to a back flow through the channel centre. As a
result a steady state is reached where the thermal creep and pressure difference
flow balance to a zero net mass flow in the channel.
The flow is simulated as an unsteady one with a constant time step. The

Knudsen number was defined to be the average mean free path along the channel
walls related to the channel height. In the following the main properties of the
computational setup are summarised:

• second order implicit time discretisation scheme;
• second order upwind spatial discretisation scheme;
• laminar simulation with ideal gas air;
• wall slip velocity and temperature jump conditions applied at channel
walls;

• zero wall shear stress constrained at tank walls;
• used grids:
– middle channel section: 220x80x1;

– tank section: 40x140x1.
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With the initial condition of zero velocities and temperature distribution
as in figure 3.11 the transient simulation was started. Results at an early time
step and a solution where steady-state is reached are shown in figure 3.12 and
3.13. The transition from pumping towards the hot tank and the later zero net
mass flow can be observed. Clearly during the initial pumping all x velocity
values are positive thus pumping the fluid from cold to hot. From the curves
of the later stages the velocity balance can be observed. In figure 3.14 and
3.15 the pressure distributions for the reached steady state solution along a
horizontal plane (y = 1/2h, channel centre) are shown. The comparison of
steady state pressure distributions for Knudsen number Kn = 0.052 shows only
small differences. The static pressure difference is ≈ 0.05% in the left side tank.
In the Kn = 0.122 case a relative pressure difference of ≈ 0.2% in the right side
tank remains. However, due to the high changes in temperature and pressure
e.g. along the channel a non-constant Knudsen number is obtained. Thus the
way of averaging has to be regarded as the procedure here is not necessarily
according to that of the reference case. The reference does not clearly state
the definition of Knudsen number used in the simulation. Therefore detailed
comparison is difficult to obtain.

wall

wall

x

y

L

h

T2 = 400 KT1 = 300 K
+

Fig. 3.11. Thermal creep setup. Colours indicate the temperature distribution; coordinate
system origin marked with (+). Figure presents two large tanks filled with ideal gas connected
with a small channel. Temperature between two tanks rises linearly from to 300 K to 400 K;
L is the length of the connecting channel and h is the channel height.
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Fig. 3.12. Thermal creep setup; normalised x velocity distribution in the function of normalised
channel height; left hand side labels indicate the stream-wise x position (x/L = 0.25 and x/L =
0.75); curve symbols correspond to the simulation time for two different times t = 510−6s and
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the first time step; calculations were performed for average Knudsen number Kn = 0.052.
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Fig. 3.13. Thermal creep setup; normalised x velocity distribution in the function of normalised
channel height; left hand side labels indicate the streamwise x position (x/L = 0.25 and x/L =
0.75); curve symbols correspond to the simulation time for two different times t = 510−6s
and t = 510−5s; velocities are normalised with the average velocity of the x/L = 0.25 profile
of the first time step; calculations were performed for average Knudsen number Kn=0.122
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Fig. 3.14. Thermal creep setup; pressure distribution on horizontal plane located in the channel
centre in the function of normalised x position; pressure is normalised with the ambient
pressure p0; Kn=0.052; the comparison data are obtained from Direct Simulation Monte Carlo
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centre in the function of normalised x position; pressure is normalised with the ambient
pressure p0; Kn=0.122; the comparison data are obtained from Direct Simulation Monte Carlo
performed by [3].
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Verification Cases

4.1. Temperature Jump Boundary Condition

The condition for temperature jump was applied to the rectangular channel
geometry setup shown in figure 4.1. Here a temperature gradient between the
lower and the upper wall was imposed by setting the wall target temperature
values to TL = 300K and TU = 350K (TU/TL = 1.167). The left and right walls
were set as wall boundaries with T = 300K as well.

upper wall, TU = 350 K

lower wall, TL = 300 K

le
ft
w
al
l,
T
=
30
0
K

ri
gh
t
w
al
l,
T
=
30
0
K

Fig. 4.1. Setup of the box for investigation of temperature jump boundary condition. All walls
apart from the upper wall are heated with T = 300 K, the upper wall has a temperature
TU = 350 K.

The temperature profiles in comparison to a profile without the Smolu-
chowski boundary condition applied are shown in figure 4.2. It can be seen that
the fluid near the walls does not reach the wall temperature value. In the tem-
perature profiles the difference between the wall temperature values and the
gas wall temperature increases with increasing Knudsen number.
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Fig. 4.2. Temperature jump boundary condition case; temperature profiles in the function
of the normalised position for nominally two-dimensional grid 25x125x1 for four different
Knudsen numbers.

4.2. Bended Diverging Channel

A simple verification test case that shows the influence of surface curvature
has been created: the flow through a bended diverging channel.
The magnitude of the resulting velocity field is presented in figure 4.4 on a

symmetry plane for a computation where a no-slip condition at the walls was
applied. The Knudsen number Kn = 6.89·10−2 is defined here with the channel
height at the inlet.
Figure 4.5 shows the wall velocity on the outer and inner wall surface. This

velocity is in the function of the arc angle φ defined as being 90◦ in the upper left
corner (inlet zone) and 0◦ in the lower right corner (outlet zone). The total wall
velocities with its tangential and normal components are visualised. In figure
4.6 the distribution of velocity component pointing normal to the corresponding
inlet and outlet is shown along the radius r. Both profiles are asymmetric with
respect to their mid-plane; r/h = 0 in radial direction. The overall velocity is
higher in the inlet plane due to its smaller cross section area compared to the
outlet, thus the difference in wall velocity is higher here. The relative difference
in the wall slip velocity at the inlet position is ∆u = 7.5% whereas at the
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Fig. 4.3. Bended diverging channel setup; the radii are Rin = 5.5 10−4m and Rout = 7.5 10−4m
with different midpoints; h is the inlet channel height defined as the characteristic length scale;
the midpoint of angle φ is point 0; the flow is from the inlet at position φ = 0 to the outlet.
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Fig. 4.4. Bended diverging channel flow; the colour scale indicates the normalised
velocity magnitude; the Knudsen number is 6.89 · 10−2.
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channel outlet ∆u = 6.7% remain.
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Fig. 4.5. Bended diverging channel flow; wall velocity normalised by the average velocity
magnitude of the whole domain in the function of the arc angle φ; the Knudsen number is
6.89 · 10−2.

4.3. Thermal Stress Slip Flow

An example test case for the verification of thermal stress slip flow is the
two-dimensional setup proposed by Sone [16] and shown in figure 4.7. The
wall temperatures in figure 4.7 are Tin = 300 K, Tout = 320 K where the
radii are Rin = 2.5 10−4m, Rout = 510−4m and the centre-point distance is
d = 1.3 10−4m. Defining the difference of radii Rout −Rin as the characteristic
length scale with the temperature T = 300 K and the ambient pressure p =
20000 Pa for the ideal gas air the Knudsen number Kn = 0.0014 is obtained
here.
In the figure the dotted line marks a plane of symmetry here, with the two

co-axial cylinders. Due to the different temperatures the second temperature
derivative ∂2T/∂x∂y does not vanish everywhere, which holds similarly for other
terms in equation (1.6) with assumption of ideal gas behaviour. It has been
pointed out that this temperature gradient contribution drives the flow in a
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Fig. 4.7. Thermal stress slip flow setup; temperature at inner surface Tin is lower than outer
surface temperature Tout; d is the distance between the rotation axes; the dotted line indicates
the symmetry plane.
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reverse direction against the thermal creep induced flow. However, thermal
creep is not present in this case due to constant wall temperatures.
Because of missing quantitative information in the reference only a qual-

itative comparison is performed here. In fact, the result visualised here is in
qualitative agreement with the papers of [11] and [16].
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Fig. 4.8. Thermal stress slip flow stream lines; brightness corresponds to the velocity magnitude
in [m/s]; Tin = 300 K and Tout = 320 K; axis of symmetry shown in lower part of the image;
the Knudsen number is Kn = 0.0014.
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Numerical Errors

5.1. Spatial Discretisation Error

Using the rectangular channel setup (see section 3.1.1.) numerical errors are
computed. Moreover the influence of the under-relaxation parameter is exam-
ined. Based on a preliminary investigation of the spatial discretisation influence
on the velocity profile for a no-slip Poiseuille flow a final set of three grids was
created. The influence of the discretisation error will be shown for this set. In
respect to its coarser predecessor each subsequent grid has a scaling factor of 2
in the spatial directions x and y. In z direction a layer with a thickness of one
cell only was created. This implies a two-dimensional flow field.
The wall and centreline velocities are compared in figure 5.1 and 5.2 re-

spectively. They show the influence of the discretisation size in y direction nor-
malised by the channel height h. Centreline and wall velocity are used then to
estimate error values. Chosen grids sizes consist of 25x125x1 (coarse), 50x250x1
(medium) and 100x500x1 (fine) grid cells. The values of the discretisation error
for a transition from the coarser grid to the finer grid are presented in table
5.1. The relative wall velocity difference for a coarse to fine grid transition is
∆u = 1.63%. Considering these values the approach to an asymptotic velocity
profile during subsequent grid refinement can be assumed. With feasibility be-
ing a crucial part in the analysis of a rather large parameter set in this test case
the choice of the coarsest grid 25x125x1 seems justified.

Grid transition
Errors

ucentre uwall
25x125x1→ 50x250x1 0.31% 1.07%
50x250x1→100x500x1 0.14% 0.55%

Table 5.1. Rectangular channel flow; spatial discretisation errors; the error values are calcu-
lated for the transition from coarser to the subsequent finer grid; the Knudsen number is
Kn = 0.1.
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Fig. 5.1. Rectangular channel flow; normalised centreline velocities in the function of the
discretisation size for three different grid levels at the stream-wise position x = 0.25L; all
values are normalised with the average velocity of the coarsest grid result uavg,coarse; the
outer y axis shows the relative velocity difference referring to the coarsest grid result; the
Knudsen number Kn=0.1 was chosen.

5.2. Iteration Error

An investigation of the dependence of the iteration error is carried out by
means of the domain mass imbalance between inlet and outlet and the ob-
tained wall velocities. It is again applied for the flat rectangular channel test
case. Normalisation of the values is achieved by the inlet mass flow and the
average velocity respectively. Calculations here were performed with an under-
relaxation factor of 0.5 for the slip velocity expression. Initial values for the
calculation were taken from a converged solution with a no-slip wall velocity
condition.
As can be seen from figure 5.3 and 5.4 a scaled residual for x-velocity mo-

mentum [8] value of ∆m = 10−7 is sufficient to obtain a converged solution.
Below a residual criterion of ∆m ≈ 5 · 10−5 the relative mass flow difference
between inlet and outlet exceeds the lower limit of the solver’s capabilities for
number display.
Figure 5.5 demonstrates how the velocity profile at the chosen channel po-

sition evolves from the no-slip profile to the converged solution within different
residual levels. No substantial changes occur between the velocity momentum
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Fig. 5.2. Rectangular channel flow; normalised wall slip velocities in the function of the dis-
cretisation size for three different grid levels at the stream-wise position x = 0.25L; all values
are normalised with the average velocity of the coarsest grid result uavg,coarse; the outer y
axis shows the relative velocity difference referring to the coarsest grid result; the Knudsen
number Kn=0.1 was chosen.

residual level ∆m = 10−6 and ∆m = 10−7. Both curves overlap each other
completely.

5.3. Influence of Under-Relaxation

For the case of slip flow regime a no-slip initial guess solution could be used.
Though the change of wall velocity for the subsequent iterations is comparably
large. In a first iteration the slip velocity is set using the no-slip velocity gradient
known beforehand. In general this leads to an increased mass flow through the
considered cross section. With the changed wall velocity in the same moment
the wall shear stress is decreased and the whole inside channel flow has to
be updated to reestablish the equilibrium between the flow driving pressure
gradient and the stress. With the flattened channel profile the velocity gradient
in the wall’s vicinity is decreased and results in a lower wall velocity in the next
iteration.
This procedure of continious wall velocity and gradient updating might slow

down the overall convergence of the simulation or even cause divergence.
Therefore, it will be shown that the under-relaxation factor f = 0 . . . 1,
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Fig. 5.3. Relative mass flux difference between inlet and outlet in the function of the scaled
residual for x-velocity momentum.

which was introduced before, serves to increase the speed of convergence. The
updated velocity value unk depends on the former value u

n−1
k and the actual

value u
′n
k as,

unk = (1− f) · un−1k + f · u′nk . (5.1)

A similar expression is used for temperature under-relaxation. Setting the
under-relaxation coefficient value to a high level again might lead to divergence
of the solution process for some cases. An investigation of Knudsen numbers
Kn = 0.1 and Kn = 0.4 was performed varying f according to a set of values.
All calculations were started with the initial distribution from a converged no-
slip solution of the same Kn value from set I. As a convergence criterion all
scaled equation residuals had to fall below the value ∆m = 10−7.
Figures 5.6 and 5.7 show that the lower the Kn value is set the higher the

value of f can be chosen here. In general f can be increased with decreasing
Kn value, which follows from the smaller quantitative difference between the
no-slip initial guess and the resulting wall slip. Both plots show that for high
values of f the calculation is diverging. It needs to be underlined that for all
chosen values of f for a converged solution the same final wall velocity value is
obtained.
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Conclusions

The boundary conditions for gas flows operating in the slip flow regime (see
figure 6.1) have been implemented for usage with the finite volume Navier
Stokes equations solver Fluent. The velocity slip and temperature jump bound-
ary conditions include the formulations of Maxwell, Smoluchowski as well as an
extended one that accounts for surface curvature.
Simulations on a number of test cases were performed in order to validate

the implemenation by comparison with results of reference cases. Among the
validation cases is the flow through a channel with constant rectangular cross
section. For the no-slip flow regime the channel flow driven by pressure differ-
ences between inlet and outlet is a Poiseuille flow with parabolic velocity profile.
In the slip flow regime the velocity profiles are flattened and have the non-zero
wall velocity. Profiles of the velocity were compared at distinct distances away
from the inlet plane. Furthermore the dependence of certain flow variable values
in the function of stream-wise position was observed. All obtained results were
in good agreement with the chosen reference test cases. Additionally this case
setup served to estimate the errors caused by the chosen discretisation scheme
and the convergence criteria. As a result it could be shown that the chosen target
variables approach asymptotic values as the computational grid is refined. Also
the convergence level used for the entire range of mentioned test cases proved
to be sufficient. The necessity for the implemented under-relaxation factor was
demonstrated for two different Knudsen number configurations.
A second validation case was chosen to check slip flow effects in curved

geometries. Two concentric cylinder surfaces with a Couette shear flow between
them provided such a test case. Furthermore the influence of the tangential
momentum accommodation coefficient was studied. The resulting radial profiles
of the circumferential velocity agreed with the analytically derived functions
values of the chosen case reference.
As a third case Knudsen pump was chosen to validate the temperature jump

boundary condition together with thermal creep flow. Thermal creep is the wall
slip velocity component induced by wall-tangential temperature gradients. It is
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the driving component in a Knudsen pump. Such a setup, following a reference
case, was imitated with a configuration of a channel that connects two tanks
heated at different temperatures. The whole transient process beginning with
pumping from cold to hot tank and the final steady state with backflow in
the channel centre was simulated. Result comparisons of the steady state pres-
sure distribution showed significant differences especially for the higher Knud-
sen number. This might be caused by missing information about the Knudsen
number definition in the reference case.

Fig. 6.1. Overview of flow regimes; the Knudsen number is shown in the function of density ρ
and characteristic length scale L; flow situations for space shuttle on re-entry, flow between disk
and head in a hard disk drive (HDD) and other micro-electro-mechanical systems (MEMS)
are indicated.

Additional verification cases demonstrated several other aspects. A wall-
bounded box was used to show the temperature distribution with temperature
jump applied. In a bended channel surface curvature was further taken into
account. A vortex flow pattern between cylinder surfaces that were placed co-
axially was observed as well. It is found in different references, but quantitative
information is missing. Thus only the qualitative behaviour was found to agree
with them.
Experimental verification for the chosen reference cases remain to be per-

formed, because all of them are either numerical simulations or an analytical
approach. The implementation of the complete boundary condition allows com-
plex flow configurations for the gas slip flow regime such as micro-electronic-
mechanical systems (MEMS). In the future the developed code will be used for
simulations of chip cooling processes and slip flow in micro bearings.
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Computational Routine

A.1. Slip Velocity Routine

The slip velocity is computed using equation (1.5). The influence of sur-
face curvature and arbitrarily rotated domains is included. For clarity only one
out of three velocity vector coordinate routines is shown here. Sections differ-
ing between the three coordinate routines are indicated as appropriate within
comment lines. Note that the lines preceding the slip velocity routine itself are
needed for all the routines mentioned here.
/***************************************************************
Slip_Thermal_BC.c
UDF - User Defined Function
for slip velocity(Maxwell) + temperature jump(Smoluchowski)
****************************************************************/

#include "udf.h" /* must be at the beginning of every UDF */
#include "sg.h" /* must be at the beginning of this UDF */
#include "math.h" /* must be at the beginning of this UDF */

/*Set preprocessor directives here in order to change
behaviour of the routine:*/

#define not SCHEMEMFP /* shall MeanFreePath be scheme var.? */
#define SCHEMETMAC /* shall TMAC ... */
#define SCHEMEUDRLXCOEFF /* shall the under-relaxation

coefficient... */
#define not SCHEMEThAC /* shall ThAC ... */
#define not SCHEMESpHR /* shall SpHR ... */
#define SCHEMESIGMASQUARE /* shall sigma-square value... */
#define SCHEMEAMBPRESS /* shall ambient pressure value... */
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#define UNDERRLX /* shall slip veloc be under-relaxated in
severe cases? */

#define WALLMOTION /* shall wall-motion be regarded? */
/*
If the scheme variables are not used fall back to some default
values as below, also some constants are defined
*/
#ifndef SCHEMESIGMASQUARE
#define sigma_square 1.35305239e-19 /* squared value of

sigma(molecule diameter) */
#endif

#ifndef SCHEMEAMBPRESS
#define ambpress 101325 /* ambient pressure */
#endif

#ifndef SCHEMETMAC
#define TMAC 1.0 /* tangential momentum accomodation

coefficient */
#endif

#ifndef SCHEMEThAC
#define ThAC 1.0 /* thermal accomodation coefficient */
#endif

#ifndef SCHEMESpHR
#define SpHR 1.4 /* specific heat ratio; Air, Oxygen,

Nitrogen */
#endif

#ifndef SCHEMEUDRLXCOEFF
#define UDRLXCOEFF 0.02 /* under-relaxation coefficient */
#endif

#define Boltzmann 1.3806505e-23 /* Boltzmann constant */
#define PI 3.14159265358979323846 /* number pi */
#define SQRT_2 1.41421356237309504880 /* sqrt(2) */
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/*
=======================================
Velocity slip at wall boundaries,
a separate routine for every velocity coordinate
this is x-coordinate routine
with thermal creep term

=======================================
*/
DEFINE_PROFILE(maxwell_slip_velocity_x_full,f_thread,index)
{

#ifdef SCHEMETMAC
real TMAC=1;
TMAC=RP_Get_Real("tmac");

#endif

real MeanFreePath=6.8e-8;
#ifdef SCHEMEMFP

MeanFreePath=RP_Get_Real("meanfreepath");
#endif

#ifdef SCHEMEUDRLXCOEFF
real UDRLXCOEFF=0.2;
UDRLXCOEFF=RP_Get_Real("udrlxcoeff");

#endif

#ifdef SCHEMESIGMASQUARE
real sigma_square=1.0e-19;
sigma_square=RP_Get_Real("sigmasquare");

#endif

#ifdef SCHEMEAMBPRESS
real ambpress;
ambpress=RP_Get_Real("ambpress");

#endif

face_t face;

cell_t cell;
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Thread *c_thread;

real slip, thcreep, dveloc;
real normal_slip, tangential_slip, tangential_thcreep;
real Coeff1[ND_ND], Coeff2[ND_ND];

real u[ND_ND];

/* call the routine that computes transformation coefficients,
once per iteration is sufficient
coord_coeff(f_thread) is called only in the velocity
$x$-coordinate routine and activated by the coordeval
scheme variable(integer) */

if (RP_Get_Integer("coordeval")==1) coord_coeff(f_thread)

if ((RP_Get_Integer("tempgradeval")>1)&&(Data_Valid_P()))
{
begin_f_loop(face,f_thread)

{

/* get cell and cell thread pointer */
cell=F_C0(face,f_thread);
c_thread=THREAD_T0(f_thread);

/* compute mean free path at every position */
#ifndef SCHEMEMFP

MeanFreePath = Boltzmann * F_T(face,f_thread) / (
sigma_square * (F_P(face,f_thread)+ambpress)*
PI * SQRT_2 ) ;

#endif

/* save the velocity coordinates into u[ND_ND] */
ND_SET(u[0],u[1],u[2],
F_U(face,f_thread),
F_V(face,f_thread),
F_W(face,f_thread)) ;

/* save the transformation coefficients c_Mm:
c_11, c_21, c_31 into Coeff1[] */

ND_SET(Coeff1[0],Coeff1[1],Coeff1[2],
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F_UDMI(face,f_thread,0),
F_UDMI(face,f_thread,1),
F_UDMI(face,f_thread,2)) ;

/* save the transformation coefficients c_Mm:
c_12, c_22, c_32 into Coeff2[] */

ND_SET(Coeff2[0],Coeff2[1],Coeff2[2],
F_UDMI(face,f_thread,3),
F_UDMI(face,f_thread,4),
F_UDMI(face,f_thread,5)) ;

/* evaluate the du/dl (tangential to surface) term in the
local coord. system */

tangential_slip=NVD_DOT(Coeff1,
NV_DOT(Coeff1,C_U_G(cell,c_thread)),
NV_DOT(Coeff1,C_V_G(cell,c_thread)),
NV_DOT(Coeff1,C_W_G(cell,c_thread))) ;

/* evaluate the du/dy (normal to surface) term in the
local coord. system */

normal_slip=-1 * NVD_DOT(Coeff1,
NV_DOT(Coeff2,C_U_G(cell,c_thread)),
NV_DOT(Coeff2,C_V_G(cell,c_thread)),
NV_DOT(Coeff2,C_W_G(cell,c_thread))) ;

/* add theses values and multiply with MFP and TMAC */
slip = ((2-TMAC)/TMAC) * MeanFreePath *
(tangential_slip+normal_slip) ;

/* evaluate the dT/dl (tangential to surface) term in the
local coord. system */

tangential_thcreep=NV_DOT(Coeff1,
C_T_G(cell,c_thread)) ;

thcreep = 0.75 * C_MU_L(cell,c_thread)/
(C_R(cell,c_thread) *
C_T(cell,c_thread)) * tangential_thcreep ;

#ifdef WALLMOTION
dveloc = Coeff1[0]* (F_UDSI(face,f_thread,1) +
(slip + thcreep)) ;
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/* in order to set the wall motion velocity a user defined scalar
variable F_UDSI(...,1) has to be created (its transport is not
important and won’t effect any result) */

#else
dveloc = Coeff1[0]* (slip + thcreep);

/* ^--- transforms back to Fluent’s coord.
system thus delivers only the velocity
component for x-direction */

#endif
/* the index ’0’ in Coeff1[..] is replaced by 0,1,2 for x, y, z;
Underrelaxation is strictly recommended for Knudsen# at the
upper bounds of the slip velocity regime
thus the preprocessor directive is activated here */

#ifdef UNDERRLX
dveloc = (1-UDRLXCOEFF) *u[0] + UDRLXCOEFF *
dveloc;

#endif

/* boundary condition value is returned */
F_PROFILE(face,f_thread,index) = dveloc;

}
end_f_loop(face,f_thread)
else {
begin_f_loop(face,f_thread)
{

/* save the velocity coordinates into u[ND_ND] */
ND_SET(u[0],u[1],u[2],
F_U(face,f_thread),
F_V(face,f_thread),
F_W(face,f_thread)) ;

/* save the transf. coefficients into Coeff1[ND_ND] */
ND_SET(Coeff1[0],Coeff1[1],Coeff1[2],
F_UDMI(face,f_thread,0),
F_UDMI(face,f_thread,1),
F_UDMI(face,f_thread,2)) ;

#ifdef WALLMOTION
F_PROFILE(face,f_thread,index) = Coeff1[0] *
F_UDSI(face,f_thread,1);
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#else
F_PROFILE(face,f_thread,index) = Coeff1[0] *
NV_DOT(u,Coeff1);

#endif
}
end_f_loop(face,f_thread)
}

}

A.2. Second Order Slip Velocity Routine

In a similar way to the routine before the slip velocity condition including
second order terms has been implemented.
The fluid solver provides no access to second order gradient terms. Those

terms are computed using a simple forward difference implementation for the
temperature gradient. Density gradients are only available in the so-called
density-based solver. That solver computes the momentum and mass conser-
vation equations in a coupled way. It imposes additional practical difficulties
during the usage. Instead the segregated solver is in use here which requires
that the first and second spatial density derivatives have to be computed from
scratch. In this sense the gradient values in surrounding cells are used inside
a central difference scheme. Note that at boundaries a forward or backward
difference scheme respectively has to be retained.
Additionally the evaluation is carried out only for the x-velocity coordinate

and then copied into the user-defined memory location UDM(...,6). In the y
and z routine this value is only read in and further processed.

/*
=======================================
Velocity slip at wall boundaries,
a separate routine for every velocity coordinate
this is x-coordinate
2nd order expressions included

=======================================
*/
DEFINE_PROFILE(maxwell_slip_velocity_x_2nd,f_thread,index)
{
#ifdef SCHEMETMAC
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real TMAC=1;
TMAC=RP_Get_Real("tmac");

#endif

real MeanFreePath=6.8e-8;
#ifdef SCHEMEMFP

MeanFreePath=RP_Get_Real("meanfreepath");
#endif

#ifdef SCHEMEUDRLXCOEFF
real UDRLXCOEFF=0.2;
UDRLXCOEFF=RP_Get_Real("udrlxcoeff");

#endif

#ifdef SCHEMESIGMASQUARE
real sigma_square;
sigma_square=RP_Get_Real("sigmasquare");

#endif

#ifdef SCHEMEAMBPRESS
real ambpress;
ambpress=RP_Get_Real("ambpress");

#endif

face_t face, nface;

cell_t cell, ncell;
Thread *c_thread, *nc_thread, *nf_thread;

real slip, thcreep, dveloc;
real normal_slip, tangential_slip, tangential_thcreep;
real tangential_tempgrad_b, tangential_tempgrad_n;
real tempgrad_2ndorder, slip_tempgrad_2ndorder;
real mu_rho_T;
real Coeff1[ND_ND], Coeff2[ND_ND];
real u[ND_ND], du[ND_ND];

real A[ND_ND];
real dr0[ND_ND], es[ND_ND], ds, A_by_es;
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real nA[ND_ND];
real ndr0[ND_ND], ndr1[ND_ND], nes[ND_ND], nds, nA_by_es;
real sclr1, mag_a, a;

if (RP_Get_Integer("coordeval")==1) {
coord_coeff(f_thread);

}

if (N_UDM < UDM_NUMBER) Error("Not enough user-defined
memory variable locations available!!");

if ((RP_Get_Integer("tempgradeval")>1)&&(Data_Valid_P()))
{
begin_f_loop(face,f_thread)
{

cell=F_C0(face,f_thread);
c_thread=THREAD_T0(f_thread);

#ifndef SCHEMEMFP
MeanFreePath = Boltzmann * F_T(face,f_thread) / (
sigma_square * (F_P(face,f_thread)+ambpress)*
PI * SQRT_2 ) ;

#endif

ND_SET(du[0],du[1],du[2],
C_U_G(cell,c_thread)[0],
C_U_G(cell,c_thread)[1],
C_U_G(cell,c_thread)[2]);

ND_SET(u[0],u[1],u[2],
F_U(face,f_thread),
F_V(face,f_thread),
F_W(face,f_thread)) ;

a=NV_MAG(u);

ND_SET(Coeff1[0],Coeff1[1],Coeff1[2],
F_UDMI(face,f_thread,0),
F_UDMI(face,f_thread,1),
F_UDMI(face,f_thread,2)) ;
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ND_SET(Coeff2[0],Coeff2[1],Coeff2[2],
F_UDMI(face,f_thread,3),
F_UDMI(face,f_thread,4),
F_UDMI(face,f_thread,5)) ;

/* evaluate du/dl (surface tang.) term in local coord. system */
tangential_slip=NVD_DOT(Coeff1,
NV_DOT(Coeff1,du),
NV_DOT(Coeff1,C_V_G(cell,c_thread)),
NV_DOT(Coeff1,C_W_G(cell,c_thread))) ;

/* evaluate du/dy (surface normal) term in local coord. system */
normal_slip=-1 * NVD_DOT(Coeff1,
NV_DOT(Coeff2,du),
NV_DOT(Coeff2,C_V_G(cell,c_thread)),
NV_DOT(Coeff2,C_W_G(cell,c_thread))) ;

BOUNDARY_FACE_GEOMETRY
(face,f_thread,A,ds,es,A_by_es,dr0) ;

n=0;
mag_a=NV_MAG(A); /* normal vector’s magnitude */

c_face_loop(cell, c_thread, n)
{

nface = C_FACE(cell,c_thread,n);
nf_thread = C_FACE_THREAD(cell,c_thread,n);

BOUNDARY_FACE_GEOMETRY(nface,nf_thread,
nA,nds,nes,nA_by_es,ndr0);

sclr1 = NV_DOT(A,nA)/(mag_a*NV_MAG(nA));
/* find out if the face is the opposite to

the boundary face */
if (((sclr1*sclr1)>0.85)&&((nface!=face)
|| (nf_thread!=f_thread))) {

/* tangential term in very same cell */
ncell=F_C0(nface,nf_thread);
nc_thread=THREAD_T0(nf_thread);
if (sclr1<0)
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{
/* tangential term in cell’s neighbour */

ncell=F_C1(nface,nf_thread);
nc_thread=THREAD_T1(nf_thread);

}
INTERIOR_FACE_GEOMETRY(nface,
nf_thread,nA,nds,nes,nA_by_es,
ndr0,ndr1);

}
}

/* tangential term in the cell at the boundary */
tangential_tempgrad_n=NV_DOT(Coeff1,
C_T_RG(ncell,nc_thread));

/* tangential term in the cell next to it */
tangential_tempgrad_b=NV_DOT(Coeff1,
C_T_RG(cell ,c_thread ));

tempgrad_2ndorder=tangential_tempgrad_n-
tangential_tempgrad_b;

/* 2nd derivative of temperature */
tempgrad_2ndorder/=nds;

mu_rho_T = C_MU_L(cell,c_thread)/
(C_R(cell,c_thread) * C_T(cell,c_thread)) ;

slip_tempgrad_2ndorder = tempgrad_2ndorder *
mu_rho_T ;

/* add the values and multiply with MFP and TMAC */
slip = tangential_slip + normal_slip -
slip_tempgrad_2ndorder ;

slip *= ((2-TMAC)/TMAC) * MeanFreePath ;

/* evaluate the dT/dl [(tangential to surface),thermal creep]
term in the local coord. system */

tangential_thcreep=NV_DOT(Coeff1,
C_T_G(cell,c_thread)) ;

thcreep = 0.75 * mu_rho_T * tangential_thcreep;

#ifdef WALLMOTION
dveloc = F_UDSI(face,f_thread,1) + slip +thcreep;
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#else
dveloc = slip + thcreep;

#endif
C_UDMI(cell,c_thread,6) = dveloc;

dveloc *= Coeff1[0];

#ifdef UNDERRLX
dveloc = (1-UDRLXCOEFF)*u[0] + UDRLXCOEFF*dveloc;

#endif

F_PROFILE(face,f_thread,index) = dveloc;

}
end_f_loop(face,f_thread)

/* if the gradients are not known, set only the boundary value
that is already known */

}
else {
begin_f_loop(face,f_thread)
{

ND_SET(u[0],u[1],u[2],
F_U(face,f_thread),
F_V(face,f_thread),
F_W(face,f_thread)) ;

ND_SET(Coeff1[0],Coeff1[1],Coeff1[2],
F_UDMI(face,f_thread,0),
F_UDMI(face,f_thread,1),
F_UDMI(face,f_thread,2)) ;

#ifdef WALLMOTION
F_PROFILE(face,f_thread,index) = Coeff1[0] *
F_UDSI(face,f_thread,1) ;

#else
F_PROFILE(face,f_thread,index) = Coeff1[0] *
NV_DOT(u,Coeff1) ;

#endif
}
end_f_loop(face,f_thread)
}
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}

A.3. Temperature Jump Boundary Condition Routine

The implementation of the temperature jump boundary condition is made
as follows:
/*
=======================================
Temperature change at wall boundaries
=======================================
*/
DEFINE_PROFILE(temperature_jump,f_thread,index)
{

real MeanFreePath;
#ifdef SCHEMEMFP

MeanFreePath=RP_Get_Real("meanfreepath");
#endif

#ifdef SCHEMEThAC
real ThAC=1;
ThAC=RP_Get_Real("thac");

#endif

#ifdef SCHEMEUDRLXCOEFF
real UDRLXCOEFF=0.2;
UDRLXCOEFF=RP_Get_Real("udrlxcoeff");

#endif

#ifdef SCHEMESpHR
real SpHR;
SpHR=RP_Get_Real("sphr");

#endif

face_t face;

cell_t cell;
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Thread *c_thread;

real Coeff2[ND_ND];

real Prandtl, gamma, temp, normal;

/* call the routine that computes the transformation
coefficients, once per iteration should be enough */

coord_coeff(f_thread);

/* loops over all faces in the thread passed in the DEFINE
macro argument */

begin_f_loop(face,f_thread)
{

cell=F_C0(face,f_thread);
c_thread=THREAD_T0(f_thread);

#ifndef SCHEMEMFP
MeanFreePath = Boltzmann * F_T(face,f_thread) / (
sigma_square * (F_P(face,f_thread)+ambpress)*
PI * SQRT_2 ) ;

#endif

Prandtl = (C_MU_L(cell,c_thread)*
C_CP(cell,c_thread))/C_K_L(cell,c_thread) ;

ND_SET(Coeff2[0],Coeff2[1],Coeff2[2],
F_UDMI(face,f_thread,3),
F_UDMI(face,f_thread,4),
F_UDMI(face,f_thread,5)) ;

/* evaluate the dT/dn (normal to surface) term in the
local coord. system */

normal=NV_DOT(Coeff2,C_T_G(cell,c_thread));

gamma=(2*SpHR)/(SpHR+1);
temp=((2-ThAC)/ThAC) * gamma *
MeanFreePath/Prandtl * normal ;
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/* in order to set the wall temperature a user defined scalar
variable F_UDSI(...,0) has to be created (its transport is not
important and won’t effect the result) */

#ifdef UNDERRLX
F_PROFILE(face,f_thread,index) =
F_T(face,f_thread)*(1-UDRLXCOEFF) +
(F_UDSI(face,f_thread,0)+temp)*UDRLXCOEFF ;

#else
F_PROFILE(face,f_thread,index) =
(F_UDSI(face,f_thread,0)+temp) ;

#endif

}
end_f_loop(f,thread)

}

A.4. Computation of Transformation Coefficients

In the following paragraph the routine for computation of transformation
coefficients is documented. It performs the transformation between the solver’s
coordinate frame and the local coordinate system. It seems reasonable to use
Fluent’s intrinsic vector handling routines in order to fulfil this requirement.
The velocity vector coordinates are assigned to u[ND ND] for better handling
and the F ..() macros only once to be accessed.
void coord_coeff(Thread *f_thread)
{

face_t face;
cell_t cell;
Thread *c_thread;
real y[ND_ND];
real u[ND_ND], a;

real A[ND_ND];
real dr0[ND_ND], es[ND_ND], ds, A_by_es;

begin_f_loop(face,f_thread)
{

F_CENTROID(y,face,f_thread);
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cell=F_C0(face,f_thread);
c_thread=THREAD_T0(f_thread);

BOUNDARY_FACE_GEOMETRY(
face,f_thread,A,ds,es,A_by_es,dr0) ;

ND_SET(u[0],u[1],u[2],
C_U(cell,c_thread),
C_V(cell,c_thread),
C_W(cell,c_thread)) ;

a=NV_MAG(u);

ND_SET(F_UDMI(face,f_thread,0),
F_UDMI(face,f_thread,1),
F_UDMI(face,f_thread,2),
NVD_DOT(u,1,0,0)/a,
NVD_DOT(u,0,1,0)/a,
NVD_DOT(u,0,0,1)/a) ;

/* c_mM -> M...fixed Fluent coord. system, m...local
wall surface coord. system */

/* c_11 -> 0 */
/* c_12 -> 1 */
/* c_13 -> 2 */

ND_SET(F_UDMI(face,f_thread,3),
F_UDMI(face,f_thread,4),
F_UDMI(face,f_thread,5),
NVD_DOT(A, 1, 0, 0)/A_by_es,
NVD_DOT(A, 0, 1, 0)/A_by_es,
NVD_DOT(A, 0, 0, 1)/A_by_es) ;

/* c_21 -> 3 */
/* c_22 -> 4 */
/* c_23 -> 5 */

}
end_f_loop(face,f_thread)

}
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